[COJ6024]合并果子·改(强化版)
试题描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多把这些果子堆排成一排,然后所有的果子合成一堆。
每一次合并,多多可以把相邻两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。 因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。 例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。输入
包括两行,第一行是一个整数n,表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
输出
包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^63。
输入示例
41 2 5 2
输出示例
20
数据规模及约定
1<=n<=1000
题解
我们可以用的 dp 方法,然后进行优化。我们可以令 g[i][j] 表示 [i, j] 中最优合并方式的分界点,即使得 f[i][g[i][j]] + f[g[i][j]+1][j] 最小,不难发现 g[i][j-1] ≤ g[i][j] ≤ g[i+1][j],于是 f[i][j] = min{ f[i][k] + f[k+1][j] + S(i,j) | g[i][j-1] ≤ k ≤ g[i+1][j] },不难发现 (i - j + 1) 固定时,所有 g[i+1][j] - g[i][j-1] 之和是 n 的级别的,所以总时间复杂度变成了 O(n2).
#include#include #include #include #include #include #include #include #include #include